Книги
чёрным по белому
Главное меню
Главная О нас Добавить материал Поиск по сайту Карта книг Карта сайта
Книги
Археология Архитектура Бизнес Биология Ветеринария Военная промышленность География Геология Гороскоп Дизайн Журналы Инженерия Информационные ресурсы Искусство История Компьютерная литература Криптология Кулинария Культура Лингвистика Математика Медицина Менеджмент Металлургия Минералогия Музыка Научная литература Нумизматика Образование Охота Педагогика Политика Промышленные производства Психология Путеводители Религия Рыбалка Садоводство Саморазвитие Семиотика Социология Спорт Столярное дело Строительство Техника Туризм Фантастика Физика Футурология Химия Художественная литература Экология Экономика Электроника Энергетика Этика Юриспруденция
Новые книги
Цуканов Б.И. "Время в психике человека" (Медицина)

Суворов С. "Танк Т-64. Первенец танков 2-го поколения " (Военная промышленность)

Нестеров В.А. "Основы проэктирования ракет класса воздух- воздух и авиационных катапульных установок для них" (Военная промышленность)

Фогль Б. "101 вопрос, который задала бы ваша кошка своему ветеринару если бы умела говорить" (Ветеринария)

Яблоков Н.П. "Криминалистика" (Юриспруденция)
Реклама

Статистика: Курс лекций - Харченко Л.П.

Харченко Л.П. Статистика: Курс лекций — М.: ИНФРА-М, 2000. — 310 c.
ISBN 5-86225-382-3
Скачать (прямая ссылка): statistikakurslexiy2000.djvu
Предыдущая << 1 .. 40 41 42 43 44 45 < 46 > 47 48 49 50 51 52 .. 109 >> Следующая

К первому отнесем регрессии нелинейные относительно включенных в исследование переменных, но линейные по параметрам. Это, например, полиномы. В случае парной регрессии имеем уравнения
(Хт X)- А = ХТУ,
\ .....V " “
Оценка параметров множественной регрессии вручную
У = а0 + а,Х + а2Х2 + а3Х3 + ... .
Множественная регрессия У = f(X,, Х2) по аналогии выглядит
как
У = а0 + a,X, + а2Х2 + а3Х? + ... + Ь,Х2 + Ь2Х2 + Ь3Х^ + ... +
+ с,Х,Х2 + с2Х,Х2 + с3Х2 Х2 + ... .
Возможно применение гиперболы, других функций. При желании с помощью стандартных программ для ЭВМ может быть образовано любое нелинейное сочетание переменных, линейных относительно коэффициентов уравнения. Последние оцениваются с помощью метода наименьших квадратов.
Второй класс нелинейных функций отличается нелинейностью по оцениваемым параметрам. Таких уравнений также существует множество. Наиболее распространена степенная функция вида
У = а0Ха' (парная регрессия)
либо У = а0 X,a,X2a2 Х3аз ... (множественная регрессия).
Даже по приведенным примерам можно составить представление о широком спектре возможных аналитических представлений нелинейной формы связи. Ограничивает их использование сложность процедур оценивания параметров уравнений. Это подчас требует специальных приемов, алгоритмов, программ для ЭВМ.
Относительно просто решается такая задача для функций, преобразуемых к линейному виду. Например, степенную функцию можно прологарифмировать, получив линейную зависимость У от X в логарифмах, и применить для оценки параметров уже упоминавшийся метод наименьших квадратов. Однако надо иметь в виду, что при этом оценивается не сама нелинейная функция, но ее линейное преобразование, а это может вызвать смещение оценок параметров.
Интерпретация коэффициента регрессии как углового коэффициента в линейном уравнении для нелинейной зависимости не годится. Определить изменение У при изменении X на единицу можно с помощью производной (простой или частной), взятой по соответствующему фактору X. Так, для степенного уравнения У = а0Ха' производная по X равна
dy
f(X) =-= aoaiXa.-’ .
dX
Видно, что она является величиной переменной, а это усложняет экономическую интерпретацию результатов.
Чаще всего для характеристики влияния изменения X на У используют так называемый коэффициент эластичности (Э), который показывает, на сколько процентов изменится У при изменении X на один процент, т. е.
136
dY X X
Э ----- f'(X)-.
dX У У
Например, для линейного уравнения коэффициент эластичности фактора X выглядит как
а, X а,X
Э =-=-.
У а0 + а,Х
Для парной степенной функции У = а0 Ха' коэффициент эластичности X равен а,.
Коэффициенты эластичности — это, собственно, относительные величины. Их использование расширяет возможности сопоставления, экономической интерпретации результатов в дополнение к абсолютным величинам — коэффициентам регрессии.
7.5. Множественная корреляция
Оценки тесноты связи (корреляции) могут играть двоякую роль. Это — самостоятельные характеристики, дающие представление и о взаимодействии изучаемых факторов, и об аппроксимации фактических данных аналитической функцией. Поэтому расчет показателей множественной корреляции предполагает оценку уравнений регрессии.
При оценке линейной множественной связи рассчитывают коэффициент множественной корреляции. По смыслу он отражает тесноту связи между вариацией зависимой переменной и вариациями всех включенных в анализ независимых переменных. Обычно сначала строится линейная множественная регрессия, а затем оценивается сам коэффициент.
Наиболее общие формулы для его определения имеют следующий вид:
?(У, -У)
2
/ °2осТ '=1
R = |/1--; R2 =-,
' О2 п
I (У, - У)2 i=1
где а2 — общая дисперсия фактических данных результативного признака (дисперсия У);
а2ост — остаточная дисперсия, характеризующая вариацию У за счет факторов, не включенных в уравнение регрессии.
137
Коэффициент множественной корреляции изменяется от О до 1. Чем ближе R к 1, тем более сильная связь между У и множеством X. Эта же оценка R используется и как мера точности аппроксимации фактических данных выравненным. Если R незначительно по величине (как правило, R < 0,3), то можно утверждать, что либо не все важнейшие факторы взаимосвязи учтены, либо выбрана неподходящая форма уравнения. В этом случае следует пересмотреть список переменных модели, а возможно, и сам ее вид.
Для нелинейной множественной связи рассчитывают индекс корреляции. Форма и процедура его вычисления аналогичны указанным выше, только взаимодействие факторов аппроксимируется нелинейной функцией. Он также изменяется в пределах от 0 до 1. На практике, как правило, используется одно название — коэффициент множественной корреляции.
Квадрат R равен так называемому коэффициенту детерминации (D или R2). Он показывает, какая часть вариации зависимого признака объясняется включенными в модель факторами.
7.6. Оценка значимости параметров взаимосвязи
Получив оценки корреляции и регрессии, необходимо проверить их на соответствие истинным параметрам взаимосвязи.
Существующие программы для ЭВМ включают, как правило, несколько наиболее распространенных критериев. Для оценки значимости коэффициента парной корреляции рассчитывают стандартную ошибку коэффициента корреляции:
Предыдущая << 1 .. 40 41 42 43 44 45 < 46 > 47 48 49 50 51 52 .. 109 >> Следующая