Книги
чёрным по белому
Главное меню
Главная О нас Добавить материал Поиск по сайту Карта книг Карта сайта
Книги
Археология Архитектура Бизнес Биология Ветеринария Военная промышленность География Геология Гороскоп Дизайн Журналы Инженерия Информационные ресурсы Искусство История Компьютерная литература Криптология Кулинария Культура Лингвистика Математика Медицина Менеджмент Металлургия Минералогия Музыка Научная литература Нумизматика Образование Охота Педагогика Политика Промышленные производства Психология Путеводители Религия Рыбалка Садоводство Саморазвитие Семиотика Социология Спорт Столярное дело Строительство Техника Туризм Фантастика Физика Футурология Химия Художественная литература Экология Экономика Электроника Энергетика Этика Юриспруденция
Новые книги
Янин В.Л. "Новгородские акты XII-XV Хронологический комментарий" (История)

Майринк Г. "Белый доминиканец " (Художественная литература)

Хусаинов А. "Голоса вещей. Альманах том 2" (Художественная литература)

Петров Г.И. "Отлучение Льва Толстого " (Художественная литература)

Хусаинов А. "Голоса вещей. Альманах том 1 " (Художественная литература)
Реклама

Структура и интерпритация компьютерных программ - Абельсон Х.

Абельсон Х. Структура и интерпритация компьютерных программ — М.: Добросвет, 2006. — 608 c.
ISBN 978-5-98227-708-4
Скачать (прямая ссылка): strukturaiinterpretacii2006.pdf
Предыдущая << 1 .. 9 10 11 12 13 14 < 15 > 16 17 18 19 20 21 .. 269 >> Следующая


1.1. Элементы программирования

35

(sum-of-squares (+ 5 1) (*5 2))

(+ (square (+ 5 1)) (square (*5 2)) )

(+ (* (+ 5 1) (+ 5 1)) (* (* 5 2) (* 5 2)))

за которыми последуют редукции (+ (* 6 6) (* 10 10))

(+ 36 100)

136

Это дает тот же результат, что и предыдущая модель вычислений, но процесс его получения отличается. В частности, вычисление (+ 5 1) и (* 5 2) выполняется здесь по два раза, в соответствии с редукцией выражения

(* x x)

где x заменяется, соответственно, на (+5 1) и (*5 2).

Альтернативный метод «полная подстановка, затем редукция» известен под названием нормальный порядок вычислений (normal-order evaluation), в противоположность методу «вычисление аргументов, затем применение процедуры», которое называется ап-пликативным порядком вычислений (applicative-order evaluation). Можно показать, что для процедур, которые правильно моделируются с помощью подстановки (включая все процедуры из первых двух глав этой книги) и возвращают законные значения, нормальный и аппликативный порядки вычисления дают одно и то же значение. (См. упражнение 1.5, где приводится пример «незаконного» выражения, для которого нормальный и аппликативный порядки вычисления дают разные результаты.)

В Лиспе используется аппликативный порядок вычислений, отчасти из-за дополнительной эффективности, которую дает возможность не вычислять многократно выражения вроде приведенных выше (+ 5 1) и (* 5 2) , а отчасти, что важнее, потому что с нормальным порядком вычислений становится очень сложно обращаться, как только мы покидаем область процедур, которые можно смоделировать с помощью подстановки. С другой стороны, нормальный порядок вычислений может быть весьма ценным инструментом, и некоторые его применения мы рассмотрим в главах 3 и 416.

1.1.6. Условные выражения и предикаты

Выразительная сила того класса процедур, которые мы уже научились определять, очень ограничена, поскольку пока что у нас нет способа производить проверки и выполнять различные операции в зависимости от результата проверки. Например, мы не способны определить процедуру, вычисляющую модуль числа, проверяя, положительное

16В главе 3 мы описываем обработку потоков (stream processing), которая представляет собой способ обработки структур данных, кажущихся «бесконечными», с помощью ограниченной формы нормального порядка вычислений. В разделе 4.2 мы модифицируем интерпретатор Scheme так, что получается вариант языка с нормальным порядком вычислений.

36

Глава 1. Построение абстракций с помощью процедур

ли это число, отрицательное или ноль, и предпринимая различные действия в соответствии с правилом

Такая конструкция называется разбором случаев (case analysis). В Лиспе существует особая форма для обозначения такого разбора случаев.Она называется cond (от английского слова conditional, «условный») и используется так:

(define (abs x)

(cond ((> x 0) x)

((= x 0) 0)

((< x 0) (- x))))

Общая форма условного выражения такова:

(cond ((P1) (Є1})

Она состоит из символа cond, за которым следуют заключенные в скобки пары выражений ((p) (e)), называемых ветвями (clauses). В каждой из этих пар первое выражение — предикат (predicate), то есть выражение, значение которого интерпретируется как истина или ложь17.

Условные выражения вычисляются так: сначала вычисляется предикат (ру). Если его значением является ложь, вычисляется (р2). Если значение (р2) также ложь, вычисляется (p?). Этот процесс продолжается до тех пор, пока не найдется предикат, значением которого будет истина, и в этом случае интерпретатор возвращает значение соответствующего выражения-следствия (consequent expression) в качестве значения всего условного выражения. Если ни один из (p) ни окажется истинным, значение условного выражения не определено.

Словом предикат называют процедуры, которые возвращают истину или ложь, а также выражения, которые имеют значением истину или ложь. Процедура вычисления

1 о

модуля использует элементарные предикаты <,= и > .

Они принимают в качестве аргументов по два числа и, проверив, меньше ли первое из них второго, равно ему или больше, возвращают в зависимости от этого истину или ложь.

Можно написать процедуру вычисления модуля и так:

17«Интерпретируется как истина или ложь» означает следующее: в языке Scheme есть два выделенных значения, которые обозначаются константами #t и #f. Когда интерпретатор проверяет значение предиката, он интерпретирует #f как ложь. Любое другое значение считается истиной. (Таким образом, наличие #t логически не является необходимым, но иметь его удобно.) В этой книге мы будем использовать имена true и false, которые связаны со значениями #t и #f, соответственно.

18Еще она использует операцию «минус» -, которая, когда используется с одним операндом, как в выражении (- x), обозначает смену знака.

x если X > 0

0 если X = 0

X если X < 0

((p2} (e2})

((pn) (en)) )

1.1. Элементы программирования

37

(define (abs x)

(cond ((< x 0) (- x))

(else x)))
Предыдущая << 1 .. 9 10 11 12 13 14 < 15 > 16 17 18 19 20 21 .. 269 >> Следующая