Книги
чёрным по белому
Главное меню
Главная О нас Добавить материал Поиск по сайту Карта книг Карта сайта
Книги
Археология Архитектура Бизнес Биология Ветеринария Военная промышленность География Геология Гороскоп Дизайн Журналы Инженерия Информационные ресурсы Искусство История Компьютерная литература Криптология Кулинария Культура Лингвистика Математика Медицина Менеджмент Металлургия Минералогия Музыка Научная литература Нумизматика Образование Охота Педагогика Политика Промышленные производства Психология Путеводители Религия Рыбалка Садоводство Саморазвитие Семиотика Социология Спорт Столярное дело Строительство Техника Туризм Фантастика Физика Футурология Химия Художественная литература Экология Экономика Электроника Энергетика Этика Юриспруденция
Новые книги
Цуканов Б.И. "Время в психике человека" (Медицина)

Суворов С. "Танк Т-64. Первенец танков 2-го поколения " (Военная промышленность)

Нестеров В.А. "Основы проэктирования ракет класса воздух- воздух и авиационных катапульных установок для них" (Военная промышленность)

Фогль Б. "101 вопрос, который задала бы ваша кошка своему ветеринару если бы умела говорить" (Ветеринария)

Яблоков Н.П. "Криминалистика" (Юриспруденция)
Реклама

Теория переноса излучения: Статистические и волновые аспекты - Апресян Л.А.

Апресян Л.А., Кравцов Ю.А. Теория переноса излучения: Статистические и волновые аспекты — М.: Наука, 1983. — 216 c.
Скачать (прямая ссылка): teoriyaperenosaizlucheniya1983.djvu
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 102 >> Следующая


Закон Кирхгофа для равновесного теплового излучения и тепловые источники в теории переноса. Пусть рассеяние происходит без изменения частоты, так что сечение имеет вид (2.36) — в этом случае принято говорить (на наш взгляд, не вполне удачно) о ’’когерентном” или ’’рэлеевском’,’ рассеянии 1. Для равновесного теплового излучения в однородной, изотропной и стационарной среде, когда Js (lw/^3nj) = 0, члены с коэффициентом рассеяния as и сечением о сократятся в силу (2.34) и предположения об изотропности. Тогда из (2.60) следует, что функция источников выражается как

€q = Ola Iw , (2.62)

где Iw - яркость равновесного теплового излучения (1.27).

Соотношение (2.62) является частным случаем закона Кирхгофа, согласно которому при тепловом равновесии излучение пропорционально поглощению. В отличие от интегрального условия энергетического баланса (2.59), равенство (2.62) можно назвать’’условие детального баланса”, так как оно связывает мощность излучения среды eq с коэффициентом поглощения Oia на одной частоте ши для одного направления п.Ниже мы покажем, что при статистико-волновом выводе уравнения переноса излучения выражение (2.62) получается как следствие общей флуктуаци-онно-диссипационной теоремы [2] (см. п. 5 § 7).

Выражение (2.62) для функции источника eq часто используют и в неравновесных ситуациях, принимая тем самым гипотезу о так называемом ’’локальном термодинамическом равновесии” [13?, когда излучающие свойства среды характеризуются локальным значением температуры, которое может меняться от точки к точке.

Приближение полного перераспределения по частотам. При описании переноса излучения в атмосферах звезд в астрофизике часто используют модельное выражение для сечения рассеяния вида

о (ш, п <- W0, п0) = (4nfaa (и>‘) du')'1 аа (ш) аа (и>0), (2.63)

где аа - энергетический коэффициент поглощения. В этом случае говорят

0 '’приближении полного перераспределения по частотам” [23].

1 Первый термин следует считать неудачным из-за ненужных ассоциаций с общим понятием когерентности, а второй - из-за неоднозначности применения термина "рїлсевское рассеяние”, который чаше относят к случаю рассеяния на неоднородностях с размерами, малыми по сравнению с длиной волны.

39
К приближению (2.63) прибегают потому, что факторизованное по частотам выражение (2.63) существенно упрощает решение уравнения переноса излучения (заметное упрощение сохраняется и для сечения, равного сумме слагаемых вида (2.63) [24]). Сечение (2.63) удовлетворяет оптической теореме (2.34), если в ней заменить коэффициент рассеяния as на коэффициент поглощения Qa. Это, по сути, соответствует допущению, что ’’истинное поглощение”, приводящее к нагреву среды, отсутствует, поэтому среда, поглотив квант, через некоторое время в среднем изотропно испускает другой квант на какой-то другой частоте, но так, что линия испускания повторяет .по форме линию поглощения. Напомним, однако, что применительно к рассеянию рассуждения на квантовом языке приобретают прозрачный смысл лишь в случае сильноразреженных сред, и поэтому мы здесь не будем останавливаться на них подробней.

9. Полезные вспомогательные параметры. Для однородной и стационарной среды при описании стационарного излучения в уравнении переноса (2.40) под параметром 5 можно понимать обычную длину луча. Поскольку при этом коэффициент неоднородности а,- равен нулю, так что q = Oa + as = а,, уравнение переноса (2".40) можно записать в виде

drl„ =

= /щ+а/Чш. n) w0 J X (ш, п«- со’, n') as (со', п') Іш' (п')dco'di2n‘ + Sq-

(2.64)

Здесь вместо длины луча s используется оптическая толщина

т = f a,ds'= f (Ota + att)ds'. (2.65)

и вводятся следующие новые величины: спектральное альбедо однократного рассеяния

a, Ja (и/, п’ *- со, n) Jlo'JSln'

W0 = ----— = -------------—------—. (2.66)

as + qO Jo (оі.п со, п) Jco dSln' + ota

функция (индикатриса) рассеяния

X (со, п«- W0', п0) = а (со, п— а>п, п0)/а* (со0, п„) =

= а (w. п «- Cj0, n0)/ Ja (со, п «- со0. По) Jto'JJV (2.67)

и функция источника

Sq = eqlot, = eq/(aa + а*) (2.68)

(в однородной изотропной среде отличие Sq OT Cq сводится к постоянному множителю).

Обычно эти параметры вводят для случая, когда рассеяние происходит без изменения частоты (сечение имеет вид (2.36)), а среда изотропна а0 и Ots не зависят от п, а о(й, п ¦- со', п') = (nn')S(co - со')). При этих допущениях интегральный член (2.64) упрощается, так как из него выпадает коэффициент рассеяния as.

Параметры (2.66) - (2.68) имеют простой физический смысл и часто используются в приложениях теории переноса.. Оптическая толщина т характеризует жстинкцию, т.е. совокупное ослабление волны: если г ^l,

40
то излучение сильно ослабляется из-за рассеяния и поглощения, а для среды с оптической толщиной т < 1 эффекты поглощения и рассеяния малы. Альбедо W0 позволяет судить об относительной роли эффектов рассеяния и поглощения: при W0 = 1 поглощение отсутствует, а при W0^l ослабление из-за поглощения преобладает над ослаблением из-за рассеяния. Индикатриса рассеяния Л" (со, п •*-со0, п0), как видно из (2.<э7), нормирована на единицу:
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 102 >> Следующая