.. " " ()

. " -64. 2- " ( )

.. " - " ( )

. "101 , " ()

.. "" ()

- ..

.. .: , 1976. 264 c.
( ): metoditeoriisistemvzadacheneprerivnoy1976.djvu
<< 1 .. 24 25 26 27 28 29 < 30 > 31 32 33 34 35 36 .. 67 >>

.

, (2.97).
, .
(2.97)
1 f u"fi " / ' + fmxn
dx.i dt = / + l-2ix2 + + hnxn
dxn dl /"1*1 + 1ri2X 2 + - + / nnxn
+ G{t)U(t) (2.107)
(2.52) X
(/") = 0. :
i
X (<) = J (/, s) G (s) U (s) ds. (2.108)
(I) = 6 (/-?), 2 (/)=... = (0 = 0
(2.107). :
fn (t)
0 = /21 (I) 8(t-Q + G(t)U(t). (2.109)
0 - fnl'(t) -
, - X (t) (2.108)

(<
= j (t, s) G (s) U (s) ds.
(t, s) (2.43)
G{t)U(t),
114

[. 2
(2.109),
'8(1-0' 0 1 (* 1 '11 (t, S). .<Pln(M) '
= \ : 0
0 *0 1 (<."). * ?1 (^* 5)_
- ()
'/ (S) / (s)
6(s -6) )ds
, (2.103)
,
d (*.0
(*,)
7n(g)
fn 1 (5)
(2.110)
, , (2.107) (2.108) 2 () = = 6 (1 - ?), !
(1) = 8 (/) = ... = (1) = 0,

. (2.111)
Xi = (1 - |)
:
0 - d 12(i, O' 7i"(0'
6 (t - 6 = ~ 2(1. -(<,6) /"(.
0 d "1 n(t,0 '/in (
= ~~; (1.5). -() fun (.
_6 (1 - _
(2.112)
(2.110), (2.111), (2.112)
(2.92). , -
:
[6 (/-6) 0...0] = --.[11(1,?)...1(1,?)]-
10(1-|)... 0] = -^-[12(/,!)... (/,?)]
1/ (?)/"1(c)]), 2 (t , I)] -
-[/(6)-.-/"(c)]()*
|0 0... 6 (1 -1)] = - [1(1,1)... (1,1)]-

115
, ,
:
b(t-Z) 0
(*-?)
6 .--6 (t-l)
().-.()
(,)...2(4, .)
-1 (! - - (9 ?)_
d
df
f (... fm )-
/l2 (?).../m2 ( _/m (,).. -fnn (?)
().
,
,
(2.43) (2.21). -
/6 (t - ?), :
- (t, ?) = (c) (t, I) + /6 (t - I). (2.113)
,
.
(2.57)
W (t, 1) = (t, Q G (|), , , :
WT (t, I) = GT(T(t, Q. (2.114)
(2.113) (2.114) | t.
:
- ( t) = (0 (1,0 + / (, _ 6)i |
(2.115) ,
. 2.21, .
(2.97). U (t) = (t -
|), .Y (t) = \ (t, |) ,
. 2.21, .


116

[. 2

. 2.21.
-

(fill) (fin) (fifa) I
1
-,
I \ \fizf) 1 22) '2)
-*------' 'L-------------------^-2
Jj

I

\fint) [fit
. 2.22.

117
.
,
FT
(/).
, ,
. ,
. 2.16.
)
6)
. 2.23.
( ,
- ), ,
(. 2.22).

Wx {t, I) W2 (t, I) *) (.
2.23, a).

(2.60)

*) , W2
(t, ) W, (, ). ,
.
118

1 2
.
i
W0 (/, ?) =-- |' W2 (t, .s) \\\ (s, I) ds.
<< 1 .. 24 25 26 27 28 29 < 30 > 31 32 33 34 35 36 .. 67 >>