.. " " ()

. " -64. 2- " ( )

.. " - " ( )

. "101 , " ()

.. "" ()

- ..

.. .: , 1976. 264 c.
( ): metoditeoriisistemvzadacheneprerivnoy1976.djvu
<< 1 .. 26 27 28 29 30 31 < 32 > 33 34 35 36 37 38 .. 67 >>

.
2.9.
t0 , U (t)
t ^> t0, X (t0) X
(t) = 0. , ,

.
122

[ 2
, <

, ,
Y (I -
, ()
?20.
,
(. (2.52) (2.50))
t
X (/) = (/, "") X ("") + -. "") f (*0, s) G (s) U (s) ds.
fo
(2.121)
: 2.9 - U
(t), , X (t) = 0. (2.121)

t
'(/") + |(:"* G(s)U(s)ds = 0. (2.122)
*0
Y (tb)
. (2.122) -V )
,
. ,
- >
- X (/0),
.
:
(0 - G1 tW (f0>0 z ("), (2.123)
G'1 (0 (?0, 0 - ; Z (t) -
.
(2.123) (2.122),
t
X (") ^ ~ [J (*. s)G( GT (s) (/", g) e?,] Z ((").
to

123

t
(f0. t) - J (t0, s) G (s) GT (s) (/0, s) ds, (2.124)
^0

A' (t0) = -( Z (")- (2-125)
, (2.122), X (t0),
(t", t) (. .
), Z (t0) ,
X (t0).
(2.124).
(2.122) ,

V (t), .
(2.123). ,
(2.95),
R [ (t0, s) G (s)GT(s)$>T (to,s)] = R {[(*0,") G(s)] X
X [ (t", s) G (s)F) = R [ (to, s) G (*)].
, (2.124)
(t0, s) G (s). (t0, s) X
, , . ,
(2.94) , (t0, s) G (s)
, G(s) .
,
, (t0, t)
.
.
2.10.
(t, t0) X G (t)
X m , (
(/", t) = J (t0, s) G (s) , (s) ("", s) ds
124
[. 2
. , <&(t0,s)G(s)
[12].
, ,
U (t)
.
4,

k: X X-+U,
(t) = [t, (t)\ .
,
, Y (t).
,
1: (2.126)
] X
Y.
.
2.11.
t ,
' (/0)
Y (t).
2.7

<< 1 .. 26 27 28 29 30 31 < 32 > 33 34 35 36 37 38 .. 67 >>