.. " " ()

. " -64. 2- " ( )

.. " - " ( )

. "101 , " ()

.. "" ()

- ..

.. .: , 1976. 264 c.
( ): metoditeoriisistemvzadacheneprerivnoy1976.djvu
<< 1 .. 31 32 33 34 35 36 < 37 > 38 39 40 41 42 43 .. 67 >>

(, |), (3.31), ,
- | (. 3.8),
,
iv (t, ?) w (t, ) - w (t, ) w (t, ?),
(, ) (|, )
. (3.33)
:
-*. =2-
Bi
, Dv {t) = 2 J J w (t, 5)
w (t, ) kx (, I) du d%.

(3.32)
:
1 t
Dy(t)~ 2 J w (t., I) | w (/, u) kx (u, t) du, (3.34)
12] 141
, (3.32).
,
d- = F(t)X{t) + G(t)U(t),
X - , F (() G (L) - ,
.
. 2,
(. (2.58))
-u>,i(t,?) '12(t,I) . . .
"Va (' & wnm (f' ?)_
> (t, |) i-ro
/- .
,
,
.
142

1. 3
-
(^li ^2 -
k\(t\,t2) ki(h, (2)
Um ('>
(3.36)
kj (tu t2) - /-
.
) .
1 1
2 10ti . * - '
( j--- --' \ " -*~lPij(W
777
-
X(t)
1
"

/- ,
,
,
(. 3.9, ). ,
, - .
(3.30) -
.
12] 143


(h, h) = \ J (h, ) (f2, ) ] {, ) dll dl.

i-ro
-
(. 3.9, )

Pi (^1 j ^2) = 2 Pii (^1" ^2)'
ptj

Pi (*i, h) = j J [^ii (h, l) \ (h, U) ky (u, I) +
0 0
+ wi2 (ty, I) Wi2 (t2, ) k2 {, I) +...
... +wim(tj, l)ioirn{t2, ) km (u, ?)] dldu. (3.37)

:
(ty, f2,1, ) =
""'(9.5)!'Ti 62.") "'im (' I) u\m ('2- ")
*21(*1)!"21(2-") . . "2m (9' '" 2m ('2' ")
J0nl(fl-S)",nl(j2-M) . Wnm (h- 5) "'nm (<2. ")
- (3.36) -
,
(3.37). <1 <2
P(ty,t2)= j j {ty, t2,1, ) (, I) du dl, (3.39)
(tL, t2) -
(3.38)
144
[. 3
:
->1 (fj, t2) - = Mh'h)
- 1- )-
(3.39)


.

* (, = s () (ti - ),
s ([,) - .
(3.30)
w(t2,l)s(l = i2, u)s(u)b(u - Qdu,
i

1"
(tut- = l)s(l)dl, (3.40)
t
, ,
(fi> fs) = " )w (tu u)s (u) du. (3.40')
i>
, ' _ , :
. (3.40) (3.40') , " s
.
(3.34) .
riiie , -

Jp ; = f(t)b(t-l)dt.
12] 145
, (3.34)

t
Dy(t)= (3.41)

,
-
(^1? ^) -
s 1 () s-l (h)
6 (ty - t2),
(3.42)


1()
(h, t2) = S (ty) (ty - t2),
S(ty) =
"1 (ty) Si (<l)
-
- .
<< 1 .. 31 32 33 34 35 36 < 37 > 38 39 40 41 42 43 .. 67 >>