.. " " ()

. " -64. 2- " ( )

.. " - " ( )

. "101 , " ()

.. "" ()

- ..

.. .: , 1976. 264 c.
( ): metoditeoriisistemvzadacheneprerivnoy1976.djvu
<< 1 .. 35 36 37 38 39 40 < 41 > 42 43 44 45 46 47 .. 67 >>

0+1
(3.62), :
'11-1
(a:, t) = Hm [ (,) (] 4- ^ [ ()] dt j
= v (+),
[ ({)] = 0,
b I , t) = lim ~ 1 [2 ({) At2] -f - ai I
U
+
^ [ (t) (u)] dtdu -{-v (Xi) At ^ [? (t)] d!^ = S,
0+1 0+1

[ (t) ()] = Sb (t - ), S - ,
0
~Si 56(*-u)dfdM \ dt = S-
+i 0+1
(3.51),

--&IV (*) V (*)1 + 4- (*) = -

158
[. 3
.


f p(x)dx = 1.
(3.72) ,
-
, (3.70),
v (). , (3.70) , . . v ()
= - ,
5
() = s 2 ,
= 1/|/ 2, k/S = = 1/s2,

X2
() = ~ lA2.no
(3.61) v (, t) , (, I)
,
^- = v(t)x + a(t)n(t). (3.73)
.
, .
(3.73) ,
.
. 3.15.

,

159
(3.73), ,
v (t) = - ,
(t) = ,
- .
, . 3.15,
(2.57)
w (t, ?) =
(t)
s (3.40)

{ti, t2) = s j ; {tu I) w {t2,I) dl 0

kx {tu t2) - sbP j e_a('i=
o7,2
= - e-o(f"+fi)]i (3-74)
(3.74) -
, 1 t2
( , )

(, t2) = = 2J ~ " (3.75)
= t2 - tx.
,
,
. ,

,
, "- ,
, (3.61):
dx ^
^ = (^Xj *^2j i ^ 0 (^li ^2" > 0 (3.76)
=1
" ^
1. S
- ^ i- /-
; v ( 2, . . ., , t) - -'
; (1, 2, . . . . . , t) -
/- .
(3.76) xt (t) -
X (/), it) ^-
(I), (3.76

^ = (3.77)
(3.77)
, X (jt. V
(X, t) (X, t) , v(xi, (), xt, t)
3 76).
V (X. X, (X, t)
X , (3.77)
dX
(3.78)
(t) - X , . . (0
1 (
?3 (0
A(t)
1 1
2 *
"(tm) (*)
V.; -"mmW
t) - :
{1)
X {t) TV (/) - -):
(3.79)
9 0 . . . 0
0 k[t). . . 0
L 0 . . -
(3.80)
- XI 1 (0 -1
X(t) = 2 (f , X(t) = (t)
-xw. - (")-
(3.81)
13]

161
, (3.79) - (3.81) (3.78)
:
- ~ 111 + 2 + + aimxm + ^1,1 (0>
dt
-j- 222 + a2mx 22 {t),
dx

dt
- amlxl 0^ + + + (t).
(3.82)

. 3.16.
6 . ,
162

[. 3
,
.
,
<< 1 .. 35 36 37 38 39 40 < 41 > 42 43 44 45 46 47 .. 67 >>