.. " " ()

. " -64. 2- " ( )

.. " - " ( )

. "101 , " ()

.. "" ()

- ..

.. .: , 1976. 264 c.
( ): metoditeoriisistemvzadacheneprerivnoy1976.djvu
<< 1 .. 50 51 52 53 54 55 < 56 > 57 58 59 60 61 62 .. 67 >>

X1' () (5.34), (5.25) (5.38), :
Kz (t, ) = (t) Kxz (t, ) +
*
^ * [V (f) w (X)] (%) (, ) () d%.
( W (t) [. (5.28)].
,
. (t, ) = (t)Kxz (t, ). (5.41)
21b
KAJIMAHA - '
IPJ . i)
(5.40) ~^
(5.39) Kz(t, ) (5.41).
t
A (t) (t, )'= ^ Lt (t, s) (s, ) ds + L (t, t) (t) Kxz(t, u),
to
*>u.
, , Kxz (5.31):
t
A (t)\^L (t, s) (s, )ds -
to
t t
- ^ Lt (t, s) Kz (s, u) ds + L(I, t) (t) ^ L (t, s) Kz (s, u) ds.
Ut to
, ,
<
^ [A (t) L (t, s) - Lt (t, s) - L (t, t) (t) L (t, s)] Kz (s, u) ds =0,
#0
(>K,
Kz (s, )
s ,
A (t)L (t, s) - Lt (t, s) - L (t, t) (t) L (t, s) = 0;
*0 < * < f.
Lt (t, s):
Lt (t, s) = A (t) L (t, s) - L (t, ?)C (*)L (?, s), (5.42)
to ^ s ^ t.
(5.30). t,

t
^T = \L't (t, s) Z (s) ds + L (t, t) Z (t).
^0
Lt (t, s) (5.42). -
20]
-
219

i
J [4(0 L (t, s) -L(t, t) (0 L (f, s)]Z(s)ds+Lit, t)Z{t)=
to
t
= [A (t) - Z, (f, 0 (01J ? (*, ") -Z (s) ds + L (t, 0 2 (0-
to
, , (5.30): -^1 = [4 (0 - L
(t, (01 - (0 + ? (*, 0 z (0-
L (t, t) = (0, (5.43)

= (0 - (0 (01 (0 +K{t)Z (0. (5.44)

.0
. 5.12.
Z (t), ,
. - .
. 5.12.
,

(t) .
^
220
-
[. 5
,
- .

. (5.27),
dxz _ dX_ _ dX dt dt dt
(5.22) (5.44) -
dXc
= ( X (t) + (/) W (t) - [ (t) - (0 (01 *0 (0 -
-K(t)Z(t).
X (<) (5.26) Z (t) (5.24)
, :
^ = [ (/) - I) (t)] Xt (t) + (t) W (t) - (t)V (t).
(5.45)
1

W (t) V (t). ,
(5.45), . 5.13.
{ 20] - 221
,

.
['
(/),
(5.43),
[ L (t, s) ,
(5.30)1. ,
(t)
.
^ (5.27) (5.30), :
t
(I) = X (t) - ^ L (t, s) Z (s) ds.
t ,
" - ZT(t).
, (t), X(t)
X 1, ZT(t) i < .
(
(0 ZT (t) X {t)ZT (t) - ^ L (t, s) Z (s) ZT (t) ds.

ZT (t) (5.36)
,
[ (t) ZT(t) 1 = IX (t) (t)] rT (t) 4-
t
+ M[X (t) Fr (01 - ^ L (t, s) M \Z (s) ZT (01 ds. (5.46)
M\XK(t)Z (01- X
(t) (5.27),
[ (t) Z7 </>] = [X (t)ZT (t) - Xe(t)ZT(t)\.
0 (<) (5.30) (5.31
(5.33),
[ ( Z ! 1 = Kxz (0 s) (s, 0 ds.
222
-
[. 5
<< 1 .. 50 51 52 53 54 55 < 56 > 57 58 59 60 61 62 .. 67 >>