Книги
чёрным по белому
Главное меню
Главная О нас Добавить материал Поиск по сайту Карта книг Карта сайта
Книги
Археология Архитектура Бизнес Биология Ветеринария Военная промышленность География Геология Гороскоп Дизайн Журналы Инженерия Информационные ресурсы Искусство История Компьютерная литература Криптология Кулинария Культура Лингвистика Математика Медицина Менеджмент Металлургия Минералогия Музыка Научная литература Нумизматика Образование Охота Педагогика Политика Промышленные производства Психология Путеводители Религия Рыбалка Садоводство Саморазвитие Семиотика Социология Спорт Столярное дело Строительство Техника Туризм Фантастика Физика Футурология Химия Художественная литература Экология Экономика Электроника Энергетика Этика Юриспруденция
Новые книги
Цуканов Б.И. "Время в психике человека" (Медицина)

Суворов С. "Танк Т-64. Первенец танков 2-го поколения " (Военная промышленность)

Нестеров В.А. "Основы проэктирования ракет класса воздух- воздух и авиационных катапульных установок для них" (Военная промышленность)

Фогль Б. "101 вопрос, который задала бы ваша кошка своему ветеринару если бы умела говорить" (Ветеринария)

Яблоков Н.П. "Криминалистика" (Юриспруденция)
Реклама

Приключения математика - Улам С.

Улам С. Приключения математика — НИЦ, 2001. — 272 c.
ISBN 5-93972-084-6
Скачать (прямая ссылка): priklucheniyamatematika2001.djvu
Предыдущая << 1 .. 31 32 33 34 35 36 < 37 > 38 39 40 41 42 43 .. 121 >> Следующая

Фон Нейман был другим. У него тоже было несколько довольно независимых технических приемов, которые он знал как свои пять пальцев (редко случается, что таких приемов у матема-
тиков больше двух или трех). К ним относилась его способность к символьным преобразованиям линейных операторов. Он обладал также непостижимым «здравым смыслом» в понимании логических структур, основ и «надстроек» в новых математических теориях. Это сослужило ему хорошую службу позже, когда он заинтересовался идеей возможной теории автоматов и взял на себя разработку как концепции, так и конструирования вычислительных машин. Он пытался выявить и провести формальные аналогии между функционированием нервной системы в общем и человеческого мозга в частности и работой только что разработанных компьютеров.
Винер, в некоторой степени скованный инфантилизмом и наивностью, психологически был, наверное, в невыгодном положении от того, что по воле своего отца он с самого детства стал для всех вундеркиндом. Фон Нейман, который также начинал довольно молодым, знал мир намного лучше и проявлял больше здравого смысла в том, что находится вне области чистого интеллекта. Кроме того, Винер больше придерживался традиций схоластической еврейской школы, даже несмотря на то, что его мнения и убеждения были очень либеральными. Невозможно было не заметить, что натуре фон Неймана эта черта была совершенно чужда.
Неисчерпаемая любознательность Джонни распространялась на многие разделы теоретической физики, начиная с его работы, в которой он, начав освоение нового направления, предпринял попытку сформулировать прочную математическую основу квантовой теории. Его книга «Математические основы квантовой механики», изданная свыше сорока лет назад, является не только классикой, но своего рода библией в данном предмете. Особенно его завораживала загадочная роль числа Рейнольдса и мнимая тайна внезапного возникновения турбулентности в движении жидкости. Он обсуждал с Винером озадачивающие значения этого числа, которое является «безразмерным» — чистое число, выражающее отношение сил инерции к силам вязкости, число большое — порядка двух тысяч. Почему же именно столько, а, скажем, не единица, не десять и не пятьдесят? Тогда мы с Джонни пришли к выводу, что пролить свет на причины перехода от ламинарного (регулярного) потока к турбулентному могут лишь современные подробные численные расчеты для множества частных случаев.
Он рассказал мне еще об одной своей дискуссии с Винером, в ходе которой они занимали различные позиции: Джонни, рассуждая о создании моделей, характеризующих работу человеческого мозга, выступал в пользу численного метода на основе последовательности тактов, тогда как Винер настаивал на непрерывных или «гормональных» основах. Дихотомия между двумя этими точками зрения до сих пор представляет собой огромный интерес и к на-
стоящему моменту, конечно, приняла уже другой облик и стала глубже благодаря более обширным знаниям анатомии мозга и одновременно более емким исследованиям в теории автоматов.
Весьма любопытными были отношения между фон Нейманом и Дж. Д. Биркгофом. Биркгоф не восхищался и не ценил в полной мере талант фон Неймана. По-видимому, он не считал, что те многие области математики, в которых работал фон Нейман, представляют собой особую ценность. Он восхищался его блестящей техникой, но все же вкусы Дж. Д. были более классическими, в традициях Пуанкаре и великой французской школы анализа. Совсем другие интересы имел фон Нейман. Биркгоф стремился получить какие-нибудь грандиозные результаты в физике, и на его счету действительно есть несколько интересных с технической стороны, но не принципиально важных достижений в общей теории относительности. Несколько раз он читал лекции по этому предмету в Мехико, стимулируя маленькую местную школу релятивистов. Интересы фон Неймана были связаны с основами последних разработок в новой квантовой теории. Они демонстрировали различия в интересах, подходах, системах ценностей. Биркгоф предпочитал исследовать скорее вглубь, чем вширь. Фон Нейман делал, до некоторой степени, и то, и другое. Конечно, еще была разница в возрасте — примерно в четверть века — в происхождении и в воспитании. Кроме того, фон Нейман так никогда и не простил Дж. Д. того, что тот «сорвал куш» в деле с эргодической теоремой. Фон Нейман первым доказал слабую эргодическую теорему, как ее сейчас называют. Биркгоф, применив какой-то совершенно виртуозный метод комбинаторного мышления, смог доказать более сильную теорему и, располагая большим влиянием на редакторов издания «Proceedings of the National Academy of Sciences», первым издал свою работу. Джонни так и не смог забыть этого. Иногда он жаловался на это мне, но всегда вскользь и не напрямую.
В дополнение к элементарным курсам математики, которые я читал во время своего первого года в Обществе, меня попросили постепенно приступить и к более сложным курсам. Мне это было по нраву, ведь лучший способ выучить предмет — это попытаться систематически обучать ему. Тогда сам постигаешь ключевые моменты, суть дела. Один курс, довольно важный, был по классической механике и читался для студентов последнего курса — курса Math. 4, если я правильно запомнил. Другой курс, Math. 9, был по теории вероятностей. Я в то время не очень представлял себе, что означали оценки: А, В, С, D или F. Но мои нормы были весьма жесткими. Я помню неплохого в общем студента, который был не согласен с оценкой «С». За него вступились несколько профессоров, но я упрямо и, возможно, глупо стоял на своем. Сейчас я уже
Предыдущая << 1 .. 31 32 33 34 35 36 < 37 > 38 39 40 41 42 43 .. 121 >> Следующая