Книги
чёрным по белому
Главное меню
Главная О нас Добавить материал Поиск по сайту Карта книг Карта сайта
Книги
Археология Архитектура Бизнес Биология Ветеринария Военная промышленность География Геология Гороскоп Дизайн Журналы Инженерия Информационные ресурсы Искусство История Компьютерная литература Криптология Кулинария Культура Лингвистика Математика Медицина Менеджмент Металлургия Минералогия Музыка Научная литература Нумизматика Образование Охота Педагогика Политика Промышленные производства Психология Путеводители Религия Рыбалка Садоводство Саморазвитие Семиотика Социология Спорт Столярное дело Строительство Техника Туризм Фантастика Физика Футурология Химия Художественная литература Экология Экономика Электроника Энергетика Этика Юриспруденция
Новые книги
Цуканов Б.И. "Время в психике человека" (Медицина)

Суворов С. "Танк Т-64. Первенец танков 2-го поколения " (Военная промышленность)

Нестеров В.А. "Основы проэктирования ракет класса воздух- воздух и авиационных катапульных установок для них" (Военная промышленность)

Фогль Б. "101 вопрос, который задала бы ваша кошка своему ветеринару если бы умела говорить" (Ветеринария)

Яблоков Н.П. "Криминалистика" (Юриспруденция)
Реклама

Приключения математика - Улам С.

Улам С. Приключения математика — НИЦ, 2001. — 272 c.
ISBN 5-93972-084-6
Скачать (прямая ссылка): priklucheniyamatematika2001.djvu
Предыдущая << 1 .. 71 72 73 74 75 76 < 77 > 78 79 80 81 82 83 .. 121 >> Следующая

Число их применений в точных и естественных науках, а также в нашей повседневной жизни настолько велико, что можно говорить о начале «эры компьютеров и автоматов».
Но в то время компьютеры были еще только in statu nascendi1. В шутку я предложил нанять для проведения расчетов по методу Монте-Карло несколько сотен китайцев из Тайваня, посадить
'В состоянии зарождения (лат.) — Прим. ред.
их на корабль, вооружить каждого счетами или даже просто ручкой и бумагой и, дав им задание, предполагающее некий реальный физический процесс, бросание костей, к примеру, заставить тем самым получать случайные числа. Затем кто-нибудь собрал бы результаты и обобщил эти статистические данные в виде конкретных ответов.
Фон Нейману принадлежала ведущая роль в зарождении ЭВМ. Благодаря уникальному сочетанию своих талантов, интересов и особенностей характера, он прекрасно подходил для этой роли. Я думаю в этой связи о его способности и склонности доводить до конца каждую скучную деталь при программировании, учитывать любую мелочь, связанную с представлением очень больших задач в «удобоваримой» для компьютеров форме. Именно понимание и знание деталей систем математической логики и теоретической структуры формальных систем позволило ему придумать гибкое программирование. Это было великим его достижением. Благодаря составлению соответствующих блок-схем и программ, стало возможным рассчитывать на одной машине огромное разнообразие задач, ничего не меняя при этом в соединениях. До его изобретения каждый раз, когда задача менялась, приходилось выдергивать провода и заново соединять платы.
В конкретную форму со всеми сопутствующими зачатками теории метод Монте-Карло был приведен после того, как я обсудил возможности таких вероятностных схем с Джонни во время одной из наших бесед в 1946 году. Это была особенно длинная дискуссия в служебной машине, на которой мы ехали из Лос-Аламоса в Лэми. Мы проговорили всю нашу поездку, и я до сих пор помню, что именно я говорил на каждом повороте дороги и у каждой скалы, мимо которой мы проезжали. (Я упомянул об этом как о возможном примере работы «многоотсекового» хранилища памяти в мозгу, так же, как в случае, когда мы часто запоминаем место на странице, где находятся конкретные уже прочитанные нами абзацы — на правой или левой странице, вверху или внизу и т. п.) После этого разговора мы вместе разработали математические основы этого метода. На мой взгляд само название — Монте-Карло — весьма способствовало популяризации этой процедуры. А названа она была так из-за присутствия в ней своеобразного элемента везения — получения случайных чисел, с которыми играют в соответствующие игры.
Джонни сразу же понял, каким огромным может быть масштаб применения этого метода, хотя в первый час нашей дискуссии и высказывал определенный скептицизм. Однако, когда я начал приводить все более убедительные доводы, упомянув о статистических данных, говорящих о том, как часто возникает потребность в расчетах для получения приблизительных результатов
с той или иной вероятностью, он согласился со мной и, призвав свою изобретательность, принялся отыскивать оригинальные технические приемы, которые позволили бы сделать эти методы более простыми и эффективными.
Фактом является то, что «Монте-Карло» никогда не дает точного ответа; правильнее сказать, что он позволяет сделать выводы о том, каков ответ, каковы его погрешность и вероятность (то есть на какую малую величину вероятность отличается от единицы). Иначе говоря, он производит оценку значениям чисел, искомым в данной задаче.
С «пропагандистскими» докладами по этому методу я выступал много и по всем Соединенным Штатам. Очень скоро появился интерес к этой теории и предложения по ее усовершенствованию. Вот простой пример этой процедуры, которым я частенько ее иллюстрировал: возьмем расчет объема области, определяемой рядом уравнений или неравенств в пространствах с большим количеством измерений. Вместо использования классического метода приближения чего бы то ни было с помощью сетки, состоящей из точек или «ячеек», которые заключали бы в себе миллиарды отдельных элементов, здесь можно просто выбрать наугад несколько тысяч точек и, произведя выборку, получить представление об искомой величине объема.
Самые первые вопросы были связаны с получением случайных или псевдослучайных чисел. Быстро были придуманы приемы, позволившие получать их с помощью самого компьютера независимо от какого бы то ни было внешнего «физического» механизма. (Прекрасно подошли бы и излучение от радиоактивного источника или космическое излучение, не будь эти процессы слишком медленными.) Отдельно от создания точной, или «правдивой», имитации физического процесса на ЭВМ началась разработка целого подхода к изучению математических уравнений, которые, казалось бы, на первый взгляд не имеют никакого отношения к вероятностным процессам, диффузии частиц или лавинообразным процессам. Вопрос состоял в том, как привести такие операторные или дифференциальные уравнения к виду, допускающему возможность вероятностного толкования. Это одно из главных применений метода Монте-Карло, и возможности его еще не исчерпаны. Я перефразировал бы одно из утверждений Лапласа. Он утверждает, что теория вероятностей — это ни что иное, как приложение математического анализа к здравому смыслу. Тогда метод Монте-Карло — это приложение здравого смысла к математическим формулировкам физических законов и процессов.
Предыдущая << 1 .. 71 72 73 74 75 76 < 77 > 78 79 80 81 82 83 .. 121 >> Следующая