Книги
чёрным по белому
Главное меню
Главная О нас Добавить материал Поиск по сайту Карта книг Карта сайта
Книги
Археология Архитектура Бизнес Биология Ветеринария Военная промышленность География Геология Гороскоп Дизайн Журналы Инженерия Информационные ресурсы Искусство История Компьютерная литература Криптология Кулинария Культура Лингвистика Математика Медицина Менеджмент Металлургия Минералогия Музыка Научная литература Нумизматика Образование Охота Педагогика Политика Промышленные производства Психология Путеводители Религия Рыбалка Садоводство Саморазвитие Семиотика Социология Спорт Столярное дело Строительство Техника Туризм Фантастика Физика Футурология Химия Художественная литература Экология Экономика Электроника Энергетика Этика Юриспруденция
Новые книги
Цуканов Б.И. "Время в психике человека" (Медицина)

Суворов С. "Танк Т-64. Первенец танков 2-го поколения " (Военная промышленность)

Нестеров В.А. "Основы проэктирования ракет класса воздух- воздух и авиационных катапульных установок для них" (Военная промышленность)

Фогль Б. "101 вопрос, который задала бы ваша кошка своему ветеринару если бы умела говорить" (Ветеринария)

Яблоков Н.П. "Криминалистика" (Юриспруденция)
Реклама

200 знаменитых головоломок мира - Дыодени Г.Э.

Дыодени Г.Э. 200 знаменитых головоломок мира — М.: ACT, 1999. — 352 c.
ISBN 5-237-02035-6
Скачать (прямая ссылка): 200znamenitihgolovolomok1999.djvu
Предыдущая << 1 .. 58 59 60 61 62 63 < 64 > 65 66 67 68 69 70 .. 90 >> Следующая


39. Хотя сэр Хьюг и заявил, что нет нужды измерять шест, все же совершенно необходимо было определить его высоту. Друзьям и домочадцам сэра Хьюга де Фор-тибуса было хорошо известно, что он имел шесть футов росту. На исходном рисунке можно заметить, что рост сэра Хьюга в два раза больше длины его тени. Следовательно, высота флагштока в том же месте и в то же время дня тоже должна вдвое превышать длину его тени. Длина тени флагштока равна росту сэра Хьюга, следовательно, она составляет 6 футов, а высота флагштока —

249
12 футов. Далее: улитка, поднимаясь на 3 фута днем и опускаясь на 2 фута ночью, поднимается в действительности за сутки на 1 фут. В конце девятых суток она окажется в трех футах от вершины и, значит, закончит свое путешествие на десятый день.

Читатель, безусловно, воскликнет здесь:

— Все это очень хорошо, но как мы могли узнать рост сэра Хьюга? О нем ничего не говорилось!

Действительно, прямо на это не указывалось, но для людей искушенных не составит труда его определить. На рисунке к задаче 36 сэр Хьюг изображен у квадратного окна, про которое сказано, что его сторона равна 1 футу. Следовательно, отложив эту длину (нужное число раз), можно было убедиться, что рост сэра Хьюга в 6 раз превышает высоту окна, то есть равен 6 футам!

40. Последняя головоломка была, без сомнения, крепким орешком, но, надо думать, трудности не делают хорошую головоломку менее интересной, когда нам покажут ее решение. На приведенном здесь рисунке показано, как была выложена крышка у шкатулки леди Иза-



250
беллы де Фитцарнульф. Это единственное возможное решение, и удивительно (хотя я и не могу привести здесь довольно тонкий метод решения), что число, размеры и порядок расположения квадратов определяются размерами золотой полоски и что крышка шкатулки не может иметь других размеров, отличных от 20 квадратных дюймов. Число, указанное в каждом квадрате, равно длине его стороны, выраженной в дюймах, так что ответ можно проверить почти с одного взгляда.

Сэр Хьюг сделал несколько общих замечаний, которые не безынтересны и сегодня.

— Друзья и домочадцы, — сказал он, — если те странные порождения моего бедного ума, о которых мы так приятно поговорили сегодня вечером, и оказались, быть может, малоинтересными для вас, пусть они послужат напоминанием разуму о том, что наша быстротекущая жизнь окружена и наполнена загадками.

РЕШЕНИЯ ЗАГАДОК РИДЛУЭЛСКИХ МОНАХОВ

41. Пронумеруйте корзинки, показанные на исходном рисунке, от 1 до 12 в направлении, в котором, как мы видим, двигается брат Джонатан. Начиная от 1, действуйте, как указано ниже, причем «1 в 4» означает, что надо взять рыбку из корзинки 1 и переложить ее в корзинку 4.

1 в 4, 5 в 8, 9 в 12, 3 в 6, 7 в 10, 11 в 2 и кончайте последний обход, перейдя к 1; при этом вы совершите всего три обхода. Можно действовать и по-другому: 4 в

7, 8 в 11, 12 в 3, 2 в 5, 6 в 9, 10 в 1. Легко решить задачу за четыре обхода, но решение с тремя обходами найти труднее.

42. Если бы аббат не требовал, чтобы в каждой келье жило не более трех человек и чтобы каждая келья была занята, то можно было бы оказать гостеприимство

24, 27, 30, 33, 39 или 42 паломникам. Ho если принять 24 паломника так, чтобы на втором этаже было вдвое больше человек, чем на первом, и чтобы на каждой стороне было по 11 человек, то некоторые кельи пришлось бы оставить пустыми. Если, с другой сторо-

251
ны, мы попробуем разместить 33, 36, 39 и 42 паломника, то нам придется в некоторых кельях разместить более трех человек.

з jf V J з 2I1I1
S Cj 1Pljt
LlSl

н&мкшті '$6 smaafca

8 нлмнат гоиорсмеге

Z J 3 \ 3 1I1I1
YfIffY
, Cv/ Ь- с. 1 * 2 I 1 .JLJL.-

8 нлмнат 'eefkcKeee smaofca

S комнат

зта^иь

Таким образом, предполагавшееся число паломников равнялось 27, а поскольку их прибыло на 3 человека больше, то истинное число паломников составило 30. На приведенном здесь рисунке показано, как их можно разместить в каждом случае; при этом видно, что все условия выполнены.

43. Правильное решение показано на приведенном здесь рисунке. Никакой изразец не находится на одной прямой (вертикальной, горизонтальной или диагональной) с другим изразцом того же рисунка, причем использовано только три простых изразца. Если, расположив львов, вы ошибочно используете четыре изразца какого-либо другого рисунка вместо трех, то у вас окажется четыре места, куда придется поместить простые изразцы. Трюк заключается в том, чтобы взять четыре из-

252
разца одного рисунка и только по три изразца каждого другого рисунка.

44. Вопрос состоял в том, чего больше взял брат Бенджамин: вина из бутылки или воды из кувшина. Оказывается, ни того, ни другого. Вина было перелито из бутылки в кувшин ровно столько же, сколько воды было перелито из кувшина в бутылку. Пусть для определенности бокал содержал четверть пинты. В бутылке была

1 пинта вина, а в кувшине — 1 пинта воды. После первой манипуляции в бутылке содержались 3/4 пинты вина, а в кувшине — 1 пинта воды, смешанная с '/4 пинты вина. Второе действие состояло в том, что удалялась '/5 содержимого кувшина, то есть '/5 одной пинты воды, смешанной с '/5 одной четверти пинты вина. Таким образом, в кувшине были оставлены V5 четверти пинты (то есть '/5 пинты), тогда как из кувшина в бутылку было перелито равное количество ('/5 пинты) воды.
Предыдущая << 1 .. 58 59 60 61 62 63 < 64 > 65 66 67 68 69 70 .. 90 >> Следующая